

The Viscaria project

Roadshow investor presentation – Monday, Block 2

20 September 2021

Disclaimer

Forward-looking statements

This presentation contains forward-looking statements, which relate to events or future performance and reflect Copperstone's current expectations and assumptions. Such forward-looking statements are based on information previously made public by the company, other public sources, and the company's current assumptions and beliefs, which may be subject to change, and should not be viewed or understood as projections, forecasts or similar.

Investors are cautioned that these forward-looking statements are neither promises nor guarantees, and are subject to risks and uncertainties, that may cause future results to differ materially from those expected. These forwardlooking statements are made as of the date hereof and, except if required under applicable securities legislation, the company does not assume any obligation to update or revise them to reflect new events or circumstances.

Financial information

The numbers and financial figures in this presentation have not been reviewed nor audited by the company's auditor. Furthermore, some of the figures in the presentation have been rounded off.

Our vision:

Provide sustainable copper, to enable a zero carbon future

Why we put so much effort on getting the facts straight

- We take sustainability seriously we want our aspirations to be realistic not just something to put on paper
- To verify and set a realistic plan we have done a bottom-up modeling of GHG emission equipment by equipment, process step by process step conducted by a world leading consulting firm
- Based on this analysis we are convinced that already from start we will become among the top 10% greenest mines in the world

Focus of analysis

A. Sustainability **Three scopes of green house gas emissions**

Scope 1

Burning fuels (diesel, HVO) for mobile equipment e.g.

- Haulage
- Trucks
- Bulldozers

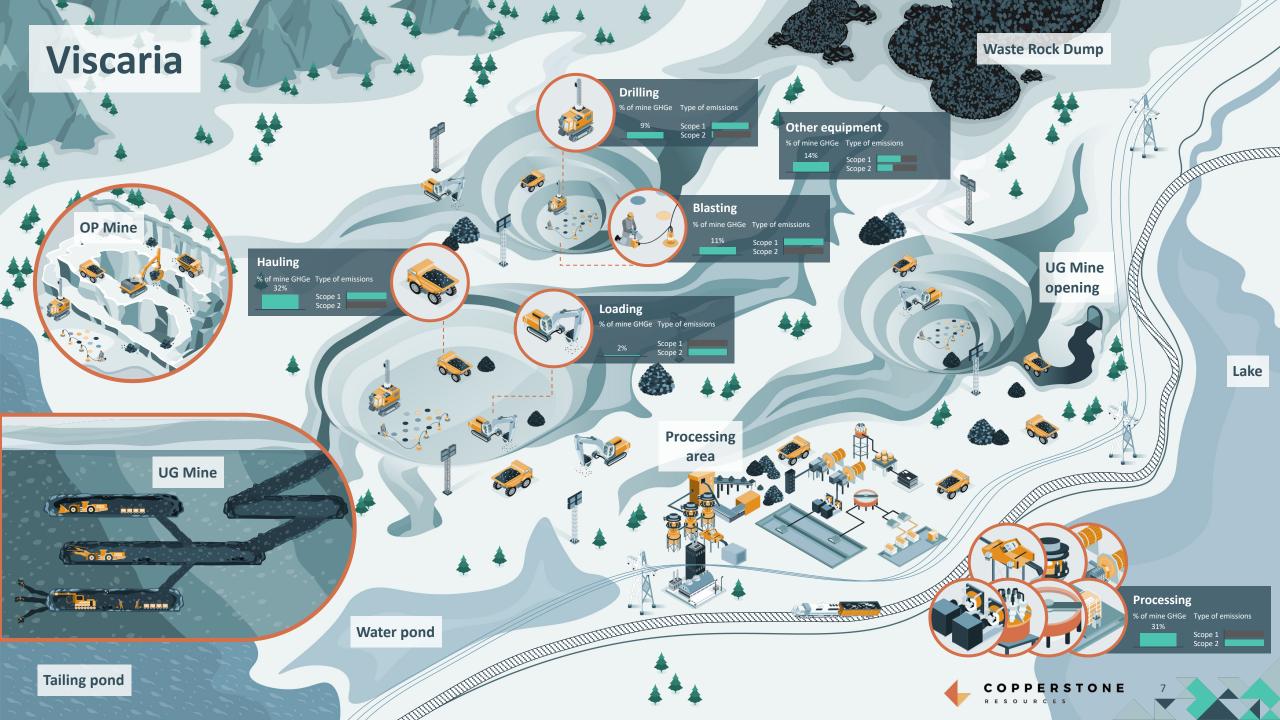
Scope 2

Electricity generated from fuel sources which produce GHG emissions e.g.

- Crushing
- Ventilation
- Mobile electric equipment

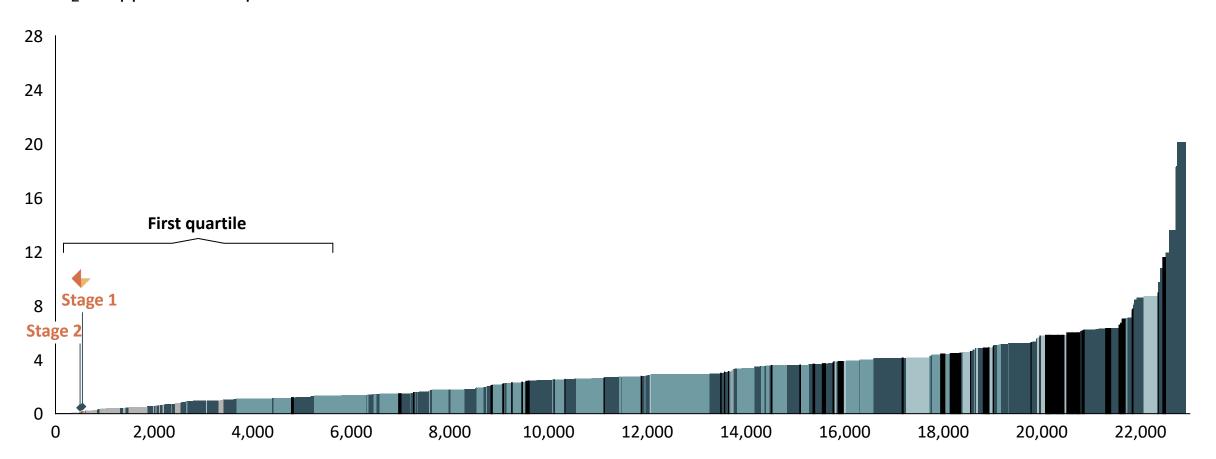
Scope 3

Upstream: Emissions from raw materials incl. construction materials, consumables, raw materials for equipment


Downstream: Emissions from suppliers (e.g., transport) or usage of sold product

ERSTONE

We will move towards Net Zero in two stages


	2025	~2028	>2028
	Stage 1: First step towards net zero	Stage 2: Reaching net zero	
Addressing Scope 1	 100% Biofuels¹, made from renewable materials such as waste oils and fats, for all diesel equipment OP Rotary Drills, 100t OP mining truck, 50t UG mining truck, Dozers, Graders, etc. Battery-electric vehicles in suitable applications UG production drill, OP Electric loader, UG 17t loader, Dewatering pumps, Crushers, Grinding mills, etc. 	 Fully electric operations, including e.g. Trolley systems for open pit Battery swapping or conveyor/skip underground Potentially using hydrogen fuel cell long-te 	!rm
Addressing Scope 2	100% renewable electricity	100% renewable electricity	

This will make us one of the world's most sustainable mines

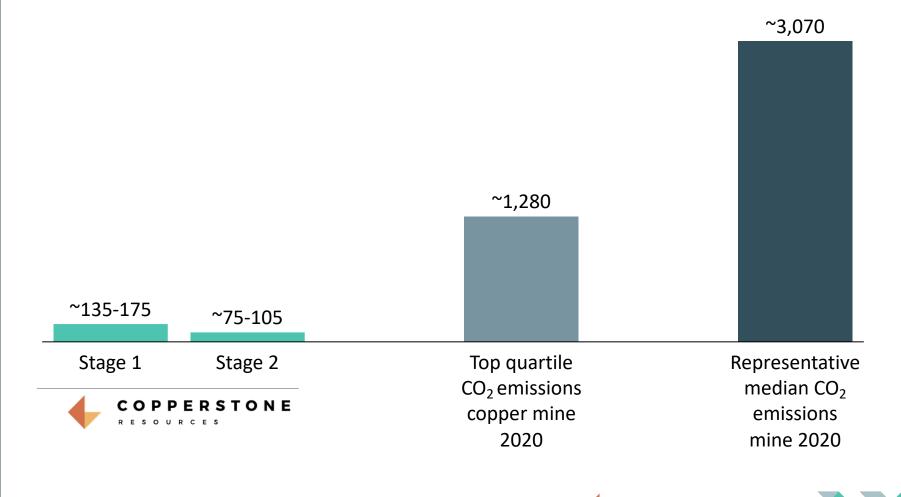
Scope 1 & 2 CO₂ equivalent emissions at minesite, 2020 t CO₂/t copper metal equivalent contained

South America

Africa

China

COPPERSTONE


PCFS

Other

United States Copperstone

Already in stage 1, Copperstone is expected to be one of the most sustainable copper mines globally

Relative scope 1 and 2 GHG emissions Kg CO₂/ tonnes copper/ year

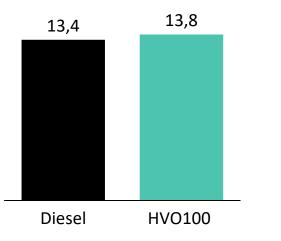
Source: Company analysis; Supplier data; Annual reports; Company presentations; Press releases

Stage 1: Viscaria GHG emissions expected at ~135-175 kg per tonnes copper produced, mainly driven by haulage and processing

Source: Company analysis; Supplier data; annual reports; Company presentations; Press releases

PCFS

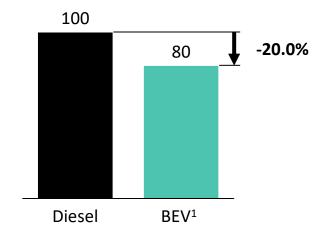
Stage 2: Viscaria GHG emissions expected at ~75-105 kg per tonnes copper produced, mainly driven by haulage and processing



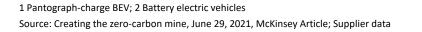
Scope 1 Scope 2

Going green will be cost efficient

The Swedish biofuel price is almost at par with the diesel price...


Swedish fuel price for industrial purchaser, 2021 SEK/L (incl. tax, excl. VAT)

- Switching to biofuels (HVO100) has decarbonization potential up to 90% vs diesel, even using existing equipment and infrastructure
- This will come at a small cost, increasing TCO by ~5% percent today at current carbon tax and subsidy levels


... and the TCO for electric haulage trucks is estimated to be ~20% lower than for diesel-driven

Total cost of ownership for a 100t haulage truck, 2025 Indexed price (100 = TCO for diesel truck in 2025)

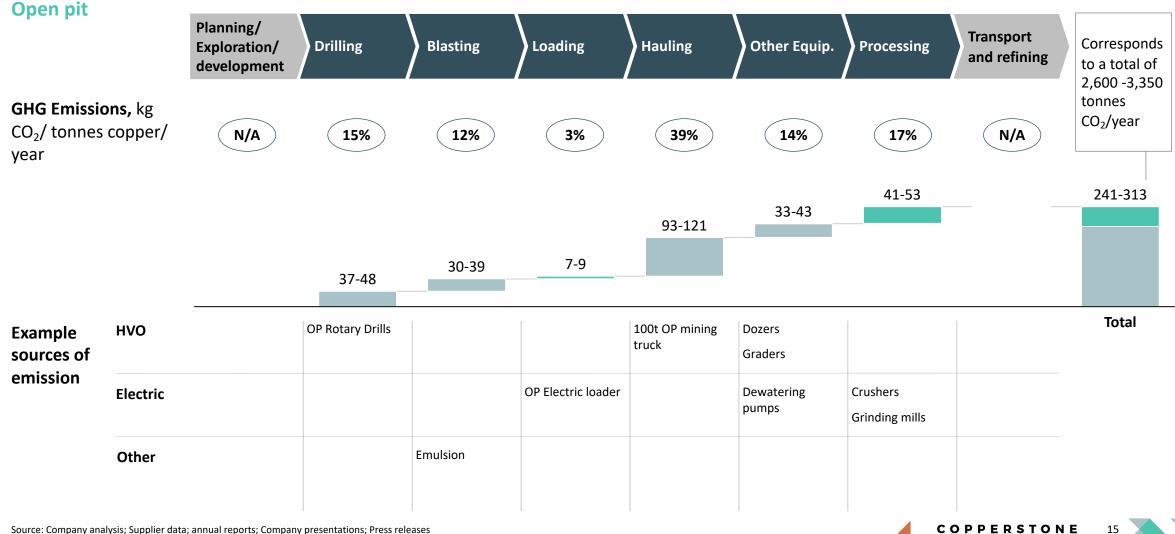
- To go fully carbon neutral, a shift in drivetrains is required; hydrogen fuel cells and BEVs² are long-term options
- TCO improvement driven by lower fuel and maintenance costs
- Different mining players are today actively looking into this; e.g., Boliden has set up a pantograph-charged hybrid at Aitik

ERSTONE

05. Appendix

Drilling, blasting, loading and other equipment Relative scope 1 and 2 GHG emissions Hauling Kg CO₂/ tonnes copper/ year Processing ~3,070 ~1,280 ~135-175 ~75-105 Top quartile Stage 1 Stage 2 Representative CO₂ emissions median CO2 COPPERSTONE emissions copper mine, RESOURCES 2020 copper mine, 2020 PPERSTONE 14

A. Sustainability


Copperstone stage 1 with lower GHG emission across all process steps

Stage 1 back-up: OP will have higher GHG emission intensity, ~240-315 kg CO₂/ tonnes copper/year, compered to the full mine driven by a lower production volume

Scope 1 Scope 2

PCFS

(X%) Share of total emissions

Source: Company analysis; Supplier data; annual reports; Company presentations; Press releases

Stage 2 back-up: OP will have higher GHG emission intensity,~100-130 kg CO₂/ tonnes copper/year, compered to the full mine driven by a lower production volume

Open pit Planning/ Transport Drilling Loading **Other Equip.** Corresponds Exploration/ Blasting Hauling Processing and refining to a total of development 1,080-1,400 tonnes **GHG Emissions**, kg CO₂/year CO_2 tonnes copper/ N/A 5% 29% 7% 13% 5% 40% N/A year 41-53 101-131 5-7 13-17 7-9 30-39 5-7 Total Example HVO sources of **OP Rotary Drills OP** Electric loader 100t OP mining Electric Crushers Dewatering emission truck pumps Grinding mills Dozers Graders Other Emulsion COPPERSTONE

Source: Company analysis; Supplier data; annual reports; Company presentations; Press releases

PCFS

Stage 1 back-up: Underground GHG emissions will come mainly from hauling, and is estimated to be ~80-110 kg CO₂ per tonnes copper per year

Undergrou		Planning/ Exploration/ development	Drilling	Blasting	Loading	Hauling	Other Equip.	Processing	Transport and refining	Corresponds to a total of
GHG Emissions, kg CO ₂ / tonnes copper/ year		N/A	1%	10%	1%	24%	15%	49%	N/A	1,900-2,500 tonnes CO ₂ /year
								41-53		83-108
						20-26	12-16			36%
			1	8-10	1					64%
Example sources of emission	In work fue HVO	l:				50t UG mining truck	Dozers Graders			Total
	Electric		UG production drill		UG 17t loader		Dewatering pumps	Crushers Grinding mills		
	Other			Emulsion						

OURCES

Stage 2 back-up: Underground GHG emissions will come mainly from hauling, and is estimated to be ~60-80 kg CO₂ per tonnes copper per year

(X%) Share of total emissions

UPCES

A. Back-up: Sustainability

Key assumptions used in modelling

Parameter	Unit	Used assumption			
Emission factor for HVO100	Kg CO ₂ eq/L of HVO100 burned	0.322			
Emission factor for electricity	Kg CO₂eq/kWh	0.011 (General electricity mix for Sweden)			
Copper recovered grade	% Cu	1.0%			
Total run rate production	Million tonnes of ore per year	3 Mt on average			
	willion tormes of ore per year	(1/3 open pit, 2/3 underground)			
Aug. mining trucks fuel consumption		70 L/h for open pit trucks			
Avg. mining trucks fuel consumption	L of HVO100/engine hour	46 L/h for underground trucks			
Avg. processing electricity consumption	kWh/t of processed ore	37			
Energy efficiency of electric engines	% of energy turned into movement	95%			
Energy efficiency of combustion engines	% of energy turned into movement	40%			
Average heating value for HVO100	kWh/L of HVO100 burned	9.98			
Reduction in ventilation requirements when going all electric in UG mine	% reduction	35%			
		COPPERSTONE 19			

OURCES

